[1]

1.	Compound	Α	is a	chloride	of a	Period	3	element
	Compound	_	10 u	ornoriae	OI G	1 01104	\sim	CICITION.

A student carries out the 2 steps below to find the formula of compound **A**.

Step 1 The student adds 5.00×10^{-4} mol of compound **A** to water.

A colourless solution is formed.

- Step 2 The colourless solution reacts with exactly $60.0 \text{ cm}^3 \text{ of } 2.50 \times 10^{-2} \text{ mol dm}^{-3} \text{ AgNO}_3(\text{aq}) \text{ to form a white precipitate.}$
 - i. Write an ionic equation, with state symbols, for the reaction in **Step 2**.

ii. Determine the formula of compound **A**.

2. In the UK, water companies typically treat drinking water with chlorine gas at a concentration of 0.500 mg dm⁻³ or less.

Which statement about UK drinking water is correct?

- **A** Chlorine in drinking water can catalyse the breakdown of ozone.
- **B** Chlorine may form toxic chlorinated hydrocarbons.
- **C** Drinking water with a chlorine gas concentration of 0.500 mg dm⁻³ contains 2.12 × 10¹⁸ chlorine molecules in each dm³.
- **D** In hot weather, chlorine can vaporise from drinking water to cause global warming.

Your answer [1]

- **3.** Which reaction does **not** show disproportionation of chlorine?
- $A \qquad MnO_2 + 4HCI \rightarrow MnCI_2 + CI_2 + 2H_2O$
- **B** $Cl_2 + H_2O \rightarrow HCl + HClO$
- C $2C/O_2 + 2NaOH \rightarrow NaC/O_2 + NaC/O_3 + H_2O$
- **D** $2NaOH + Cl_2 \rightarrow NaCl + NaClO + H_2O$

Your answer [1]

[2]

[1]

4.	Chlorine	has	manv	uses.

i.	Chlorine is used	d to treat water in	large-scale water	treatment plants.

Suggest why chlorine is added to water in large-scale water treatment plants.

_____[1]

ii. Sea water contains aqueous bromide ions.

Chlorine is used to extract bromine from sea water.

Construct the ionic equation for this reaction and explain why chlorine is suitable for this extraction of bromine but iodine is **not**.

Equation

Explanation

5. Which equation does **not** represent a disproportionation reaction?

- A $CI_2 + H_2O \rightarrow HCIO + HCI$
- **B** $Cl_2 + 2NaOH \rightarrow NaC/O + NaC/ + H_2O$
- **C** $4KC/O_3 \rightarrow KC/ + 3KC/O_4$
- $\mathbf{D} \qquad 4HC/ + MnO_2 \rightarrow MnCI_2 + CI_2 + 2H_2O$

Your answer [1]

- 6. Which statement explains the trend in boiling points down the halogens group?
- **A** The bond enthalpy of the covalent bonds increases.
- **B** The halogens become less electronegative.
- **C** The induced dipole-dipole interactions (London forces) become stronger.
- **D** The reactivity of the halogens decreases.

Your answer

7. This question is about the first 36 elements in the periodic table:

н																	Не
Li	Ве											В	С	N	0	F	Ne
Na	Mg											Αl	Si	Р	s	CI	Ar
к	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr

		K	Ca	Sc	Ті	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
	,																			,
From these 36 elements only , write the symbol for the element(s) that fit each description.																				
The ele	ement	t tha	t forn	ns 1-	- ions	s mo	st rea	adily												
																				[1
8. Whic	ch sta	item	ent e	xplai	ns th	e tre	nd ir	ı boil	ing p	oints	dow	n the	e hal	ogen	s gro	up?				
B C	Coval Induc Ionic Perm	ed d	lipole ds be	edip	ole ir e str	ntera onge	ction r.	s (Lo			·		me s	tronç	ger.					
Your a	ınswe	r																		[1]
9(a). T	his qu	uesti	on is	abou	ut ha	loger	ns ar	nd ha	loge	n cor	npou	ınds.								
Seawa	ter co	ntai	ns ve	ery sr	nall o	quan	tities	of di	ssol	∕ed i	odide	e ions	S.							
The co	ncent	tratio	n of	pota	ssiur	n iod	ide, I	KI, in	sea	wate	ris C	.150	g dn	n ^{–3} .						
Iodine	can b	e ex	tract	ed by	/ bub	bling	g chlo	orine	gas	throu	ıgh s	eawa	ater.							
Explair to man								an io	dine	and	dete	rmin	e the	volu	me, i	in dm	າ ³ , of	sea	wateı	r that is needed

3.1.3 Th	e Halogens		PhysicsAndMath	sTutor.com
				[6]
(b). Ch	lorine reacts with calci	um hydroxide to form Ca(OCI) ₂ , which	ch is the active ingredient in bleaching	powder.
$2CI_2 + 2$	$2Ca(OH)_2 \rightarrow CaCl_2 + CaCl_2 $	Ca(OC <i>I</i>) ₂ + 2H ₂ O		
This is	a disproportionation re	action.		
State w taken p		oportionation and use oxidation nu	mbers to show that disproportionation	has
				[3]
iodopro	-	operiment to compare the rates of hy below.	drolysis of 2-bromopropane and 2-	
Step 1	Place two test tube °C.	es, both containing aqueous silver n	trate and ethanol, in a water bath at 6	0
Step 2	Add five drops of 2 test tube.	2-bromopropane to one test tube and	d five drops of 2-iodopropane to the ot	her
Step 3	Record the time ta	ken for a precipitate to appear in ea	ch test tube.	
i.	Complete the table be	ow to show the formula and colour o	of each precipitate formed.	
	Haloalkane	Formula of precipitate	Colour of precipitate	
	2-bromopropane			
	2-iodopropane			
ii.	Predict which precipita bromopropane and 2-		ifference in the rates of hydrolysis of 2	[2]
				[1]

10(a)	This	question	is	about	halogens	and	practical	tests
ivia <i>i</i> .	11113	uucsuon	10	about	Halouchs	ana	Diactical	icoio

Chlorine gas reacts with dilute sodium hydroxide, NaOH(aq). This is a disproportionation reaction. One of the products has the formula NaCIO.

i.	What is meant by the term disproportionation ?
	[1]
ii.	Construct the equation for the reaction of chlorine with dilute sodium hydroxide.
	Use your equation to explain that disproportionation has taken place.
	Equation
	Explanation
	[3]
(b) . A	student is supplied with aqueous solutions of ionic compounds B and C .
Comp	bound B is a chloride, bromide or iodide of a Group 1 element.
Comp	bound C is a chloride, bromide or iodide of a Group 2 element.
The n	nolar masses of B and C are both in the range 100–115 g mol ⁻¹ .
	his information and test-tube tests to show how the student could identify the halide present in B and C and ormulae of B and C .
Expla	in your reasoning.
In you	ur answer, include observations, colours and equations.

3.1.3	The Halogens	PhysicsAndMathsTutor.com
		[5]
	What is the correct explanation for the trend in the boiling points of chlorine, br	
grot	1P :	
A	Bond enthalpy increases.	
В	Chemical reactivity decreases.	
C D	Electronegativity decreases. London forces increase.	
ט	London forces increase.	
Υοι	ır answer	[1]
12.	An aqueous solution contains a mixture of chloride, bromide and iodide ions.	
AgN	IO₃(aq) is added to this mixture, followed by an excess of dilute NH₃(aq).	
The	resulting mixture is then filtered.	
Whi	ch compound(s) is/are present in the residue on the filter paper?	
Α	AgC/ only	
В	AgC/ and AgBr	
С	AgBr only	
D	AgBr and AgI	
		[4]
Υοι	ur answer	[1]

equation

[3]

	13.	This	question	is	about	redox	reactions
--	-----	------	----------	----	-------	-------	-----------

'Calcium hypochlorite', Ca(C/O)₂, is an ionic compound used in 'bleaching powder'.

The CI O⁻ ion in Ca(CI O)₂ is the active ingredient that kills bacteria.

Calcium hypochlorite is prepared by reacting chlorine gas with calcium hydroxide.

$$2CI_2(g) + 2Ca(OH)_2(s) \rightarrow Ca(CIO)_2(s) + CaCI_2(s) + 2H_2O(I)$$

Equation 2.1

i. 420 dm³ of chlorine, measured at RTP, is reacted with an excess of Ca(OH)₂.

The solid products are dissolved in water to form 4.00 m³ of solution.

Calculate the concentration of Ca(CIO)₂(aq) in this solution, in mol dm⁻³.

Give your answer to an **appropriate** number of significant figures and in standard form.

concentration =	mol	dm ·	⁻³ [3]
-----------------	-----	------	-------------------

ii. Calcium hypochlorite, $Ca(CIO)_2$, is heated. The $Ca(CIO)_2$ decomposes to form $CaCI_2$ and $Ca(CIO_3)_2$. This is a disproportionation reaction.

Write an equation for this decomposition and explain, using oxidation numbers, why this is a disproportionation reaction.

Avnlanation	1			
explanation	!			

14. Two students plan to investigate **Equilibrium 4.1**, shown below.

$$CoCI_4^{2-}(aq) + 6H_2O(I)$$
 \Rightarrow $[Co(H_2O)_6]^{2+}(aq) + 4CI^{-}(aq)$ Equilibrium 4.1 blue

The students investigate how addition of aqueous silver nitrate, $AgNO_3(aq)$, affects the equilibrium position in **Equilibrium 4.1**.

The graph shows the changes in the equilibrium concentrations of $CoCI_4$ ²⁻, CI and $[Co(H_2O)_6]^{2+}$ after addition of the AgNO₃(aq).

The AgNO₃(aq) is added at time = t_1

i.	Explain why the	C/ concentration	drops sharply at time	$= t_1$
••	Explain willy allo	or componition	aropo oriarpiy at timo	• 1 •

[1]

ii. Explain the changes in concentration of $CoCl_4$ ²⁻, Cl and $[Co(H_2O)_6]^{2+}$ after time = t_1 . Refer to **Equilibrium 4.1** in your answer.

_____[3]